Learning knowledge-level domain dynamics

نویسندگان

  • Kira Mourão
  • Ronald P. A. Petrick
چکیده

The ability to learn relational action models from noisy, incomplete observations is essential to support planning and decision-making in real-world environments. While some methods exist to learn models of STRIPS domains in this setting, these approaches do not support learning of actions at the knowledge level. In contrast, planning at the knowledge level has been explored and in some domains can be more successful than planning at the world level. In this paper we therefore present a method to learn knowledge-level action models. We decompose the learning problem into multiple classification problems, generalising previous decompositional approaches by using a graphical deictic representation. We also develop a similarity measure based on deictic reference which generalises previous STRIPS-based approaches to similarity comparisons of world states. Experiments in a real robot domain demonstrate our approach is effective.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Organizational Learning and Knowledge Spillover in Innovation Networks: Agent-Based Approach (Extending SKIN Framework)

In knowledge-based economy, knowledge has a public good and non-rivalry nature. Firms build their own knowledge stock not only by means of internal R&D and collaboration with partners, but also by means of previously spilled over knowledge of other firms and public research laboratories (such as universities). Firms based on their absorptive capacity, and level of intra-industry and extra-indus...

متن کامل

Leveraging Domain Knowledge to Learn Normative Behavior: A Bayesian Approach

This paper addresses the problem of norm adaptation using Bayesian reinforcement learning. We are concerned with the effectiveness of adding prior domain knowledge when facing environments with different settings as well as with the speed of adapting to a new environment. Individuals develop their normative framework via interaction with their surrounding environment (including other individual...

متن کامل

Reinforcement Learning with Partially Known World Dynamics

Reinforcement learning would enjoy better success on real-world problems if domain knowledge could be imparted to the algorithm by the modelers. Most problems have both hidden state and unknown dynamics. Partially observable Markov decision processes (POMDPs) allow for the modeling of both. Unfortunately, they do not provide a natural framework in which to specify knowledge about the domain dyn...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013